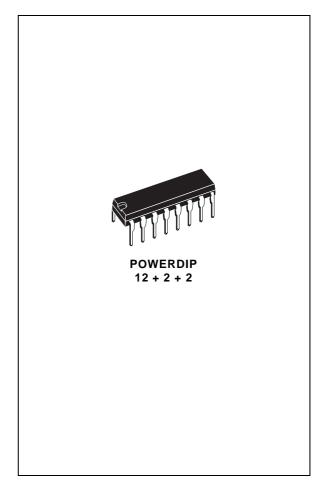
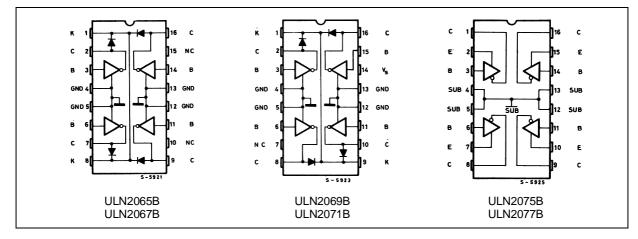


ULN2065B - ULN2067B ULN2069B - ULN2071B ULN2075B - ULN2077B

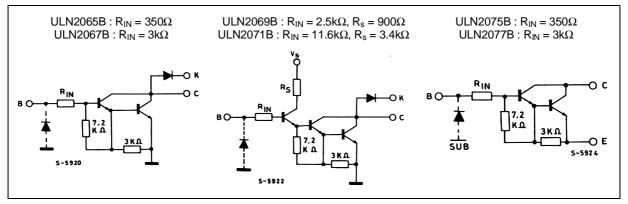

80 V - 1.5 A QUAD DARLINGTON SWITCHES


- OUTPUT CURRENT TO 1.5 A EACH DAR-LINGTON
- MINIMUM BREAKDOWN 80 V
- SUSTAINING VOLTAGE AT LEAST 50 V
- INTEGRAL SUPPRESSION DIODES (ULN2065B, ULN2067B, ULN2069B and ULN2071B)
- ISOLATED DARLINGTON PINOUT (ULN2075B and ULN2077B)
- VERSIONS COMPATIBLE WITH ALL POPU-LAR LOGIC FAMILIES

DESCRIPTION

Designed to interface logic to a wide variety of high current, high voltage loads, these devices each contain four NPN darlington switches delivering up to 1.5 A with a specified minimum breakdown of 80 V and a sustaining voltage of 50 V. The ULN2065B, ULN2067B, ULN2069B and ULN2071B contain integral suppression diodes for inductive loads and have common emitters ; the ULN2075B and ULN2077B feature isolated darlington pinouts and are intended for applications such as emitter follower configurations. Inputs of the ULN2065B, ULN2069B and ULN2075B are compatible with popular 5 V logic families and the ULN2067B, ULN2071B and ULN2077B are compatible with 6-15 VCMOS and PMOS. The ULN2069B and ULN2071B include a predriver stage to provide extragain, reducing the load on control logic.

PIN CONNECTIONS AND ORDER CODES



September 2003

ULN2065B-ULN2067B-ULN2069B-ULN2071B-ULN2075B-ULN2077B

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol		Parameter	Value	Unit
V _{CEX}	Output Voltage	80	V	
V _{CE(sus)}	Output Sustaining Voltage		50	V
lo	Output Current		1.75	А
Vi	for UL	N2075B – 2077B N2067B – 2071B N2065B – 2069B	60 30 15	V V V
lı	Input Current		25	mA
Vs		N2069B N2071B	10 20	V V
P _{tot}	Power Dissipation at T _{pin} at T _{am}	s = 90 °C b = 70 °C	4.3 1	W W
T _{amb}	Operating Ambient Temperature Range		– 20 to 85	°C
T _{stg}	Storage Temperature		– 55 to 150	°C

ELECTRICAL CHARACTERISTICS (T_{amb} = 25°C unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	Fig.
I _{CEX}	Output Leakage Current				100 500	μΑ μΑ	1
V _{CE(sus)}	Collector-emitter Sustaining Voltage	$I_C = 100 mA, V_i = 0.4 V$	50			V	2
V _{CE(sat)}	Collector-emitter Saturation Voltage	$\begin{array}{ll} I_{C}=500 \text{mA} & I_{B}=625 \mu \text{A} \\ I_{C}=750 \text{mA} & I_{B}=935 \mu \text{A} \\ I_{C}=1 \text{A} & I_{B}=1.25 \text{mA} \\ I_{C}=1.25 \text{A} & I_{B}=2 \text{mA} \\ I_{C}=1.5 \text{A} & I_{B}=2.25 \text{mA} \end{array}$			1.1 1.2 1.3 1.4 1.5	> > > >	3 3 3 3 3 3 3
l _{i(on)}	Input Current	for ULN2065B and ULN2075B $V_i = 2.4V$ $V_i = 3.75V$ for ULN2067B and ULN2077B $V_i = 5V$ $V_i = 12V$ for ULN2069B $V_i = 2.75V$ $V_i = 3.75V$ for ULN2071B $V_i = 5V$ $V_i = 12V$	1.4 3.3 0.6 1.7		4.3 9.6 1.8 5.2 5.5 10 4 12.5	mA mA mA mA mA mA	4 4 4 4 4 4 4 4

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	Fig.
V _{i(on)}	Input Voltage	$V_{CE} = 2V, I_C = 1A \\ ULN2065B, ULN2075B \\ ULN2067B, ULN2077B \\ V_{CE} = 2V, I_C = 1.5A \\ ULN2065B, ULN2075B \\ ULN2067B, ULN2077B \\ ULN2069B \\ ULN2071B \\ V_{CE} = 2V, I_C = 100000000000000000000000000000000000$			2 6.5 2.5 10 2.75 5	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	55 5555
ا _s	Supply Current	for ULN2069B $I_{C} = 500$ mA, $V_{i} = 2.75V$ for ULN2071B $I_{C} = 500$ mA, $V_{i} = 5V$			6 4.5	mA mA	8 8
t _{PLH}	Turn-on Delay Time	0.5 V_i to 0.5 V_o			1	μs	
t _{PHL}	Turn-off Delay Time	0.5 V_i to 0.5 V_o			1.5	μs	
I _R	Clamp Diode Leakage Current	for ULN2065B-ULN2067B and ULN2069B-ULN2071B $V_R = 80 V$ $T_{amb} = 25^{\circ}C$ $T_{amb} = 70^{\circ}C$			50 100	μΑ μΑ	6
V _F	Clamp Diode Forward Voltage	for ULN2065B-ULN2067B and ULN2069B-ULN2071B I _F = 1 A I _F = 1.5 A			1.75 2	V V	7

ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$ unless otherwise specified) (continued)

Notes: 1. Input voltage is with reference to the substrate (no connection to any other pins) for the ULN2075B and ULN2077B Input current may be limited by maximum allowable input voltage.

TEST CIRCUITS

Figure 1.

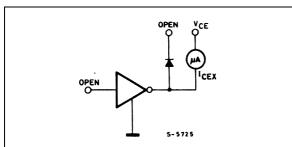
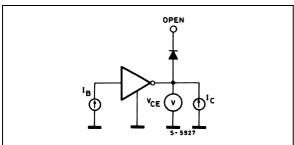



Figure 3.

Figure 2.

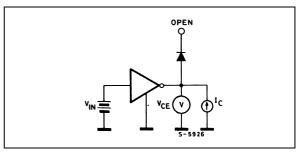
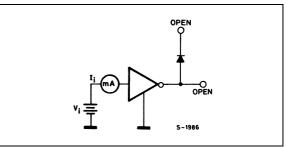
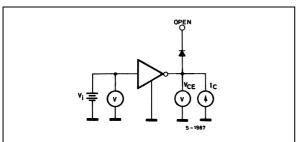




Figure 4.

ULN2065B-ULN2067B-ULN2069B-ULN2071B-ULN2075B-ULN2077B

Figure 5.

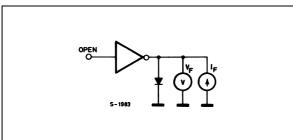


Figure 9 : Input Current as a Function of Input Voltage.

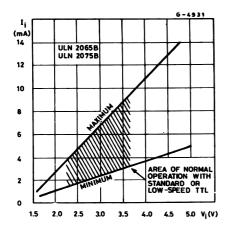


Figure 11 : Collector Current as a Function of Input Current.

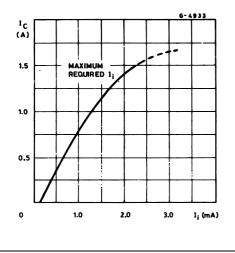
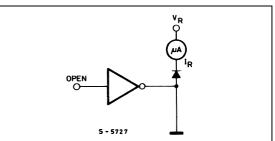



Figure 6.

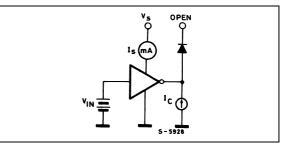
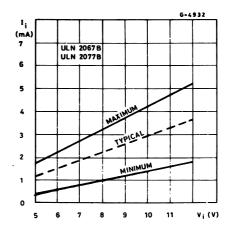



Figure 10 : Input Current as a Function of Input Voltage.

57

MOUNTING INSTRUCTIONS

The R_{th j-amb} can be reduced by soldering the GND pins to a suitable copper area of the printed circuit board (Fig. 12) or to an external heatsink (Fig. 13). The diagram of figure 14 shows the maximum dissipable power P_{tot} and the R_{th j-amb} as a function of the side " \approx " of two equal square copper areas having a thickness of 35 μ (1.4 mils).

Figure 12 : Example of P.C. Board Area which is Used as Heatsink.

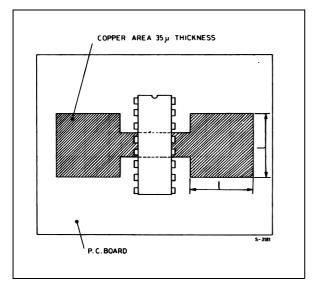
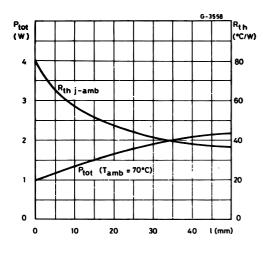
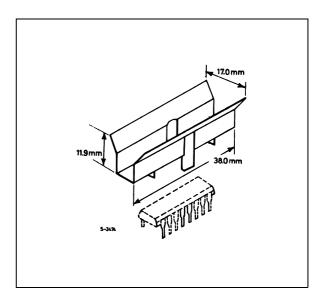
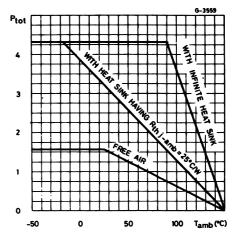



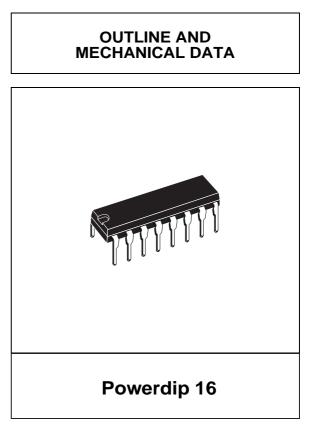
Figure 14 : Maximum Dissipable Power and Junction to Ambient Thermal Resistance vs. Side "I".

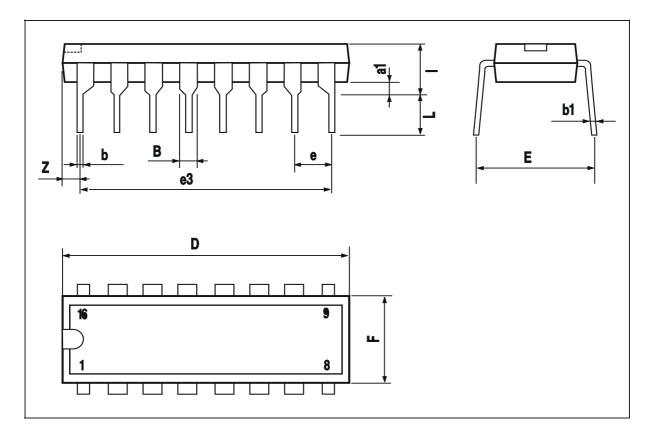
During soldering the pins temperature must not exceed 260 $^{\circ}$ C and the soldering time must not be longer than 12 seconds.

The external heatsink or printed circuit copper area must be connected to electrical ground.

Figure 13 : External Heatsink Mounting Example.


Figure 15 : Maximum Allowable Power Dissipation vs. Ambient Temperature.


57

ULN2065B-ULN2067B-ULN2069B-ULN2071B-ULN2075B-ULN2077B

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	0.85		1.40	0.033		0.055	
b		0.50			0.020		
b1	0.38		0.50	0.015		0.020	
D			20.0			0.787	
E		8.80			0.346		
е		2.54			0.100		
e3		17.78			0.700		
F			7.10			0.280	
I			5.10			0.201	
L		3.30			0.130		
z			1.27			0.050	

57

6/7

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the conse-quences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMi-croelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2003 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia – Belgium - Brazil - Canada - China – Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States www.st.com

